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I. INTRODUCTION

In part I of this paper [8] we examined the variation of the zeros of an
analytic function f'when fis varied by a small function, under the assumptions
that fis bounded in the region considered and bounded away from zero at one
point. No assumption was made regarding the multiplicities of the zeros of f.

In this part we study the behavior of zeros of specified multiplicity. To fix the
ideas, we consider the Banach algebra R of all functions f, analytic and
bounded in the unit circle U:|z| < 1, with the norm

I/l = sup{|f(2)|:z€ U}.

Suppose that fe R, || f|| < 1 and that fhas a zero of order » at 0. What can we
say about the zeros of g = f+ ¢, where € R and ||¢|| is small?
We may represent fin the form

f(@)=2"h(z)

where A€ R, [hl|< 1, |0)| = 4>0. By Hurwitz’ theorem we know that if ||$] is
sufficiently small, then g has exactly # zeros near the origin. Our first concern is
to make this statement precise and quantitative. We prove

THEOREM 2. Under the above assumptions on f, if |\l < € < e, {(4), where

nt An+1 nAZ .
(xn(A) = (n+ 1)n+1 (1 +I’l+ 1 + O(A ))’
then the number n(r, g) of zeros of g in U,: |z| < r is equal to n, for
MA<r<MA,

where A, and X, are the roots of the equation
A1 — ) =8(1 — A4, €= 34"
in the interval 0 < A < 1.
As 8 — 0 the numbers A; and A, satisfy

A =1—(1— 458+ 0
275
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and

1— A
Az=n(1+(~——n )n+0(n2)), 7" =3

While the proof follows classical lines, it is not usually observed that we can
specify a small circle in which there are n zeros and a fairly large circle in which
there are no other zeros.

For n= 1, we can obtain much more detailed information. If z(g) is the
(unique) smallest zero of g, then z(g) is approximately —g(0)/f"(0), and we have
the error estimate
g(0)
1)

Now the quantity L(g) = —g(0)/f'(0) = =¢(0)/f'(0) is a linear functional on R,
and the estimate

Iz(g) + < 12¢%/43.

2(g) —z(f) —L(g —f) = O(lg —f1?)

shows that L = z'(f) is the Fréchet derivative of z at . The Fréchet differenti-
ability of z(g) means that z(g) is an analytic function on a certain domain of R.
Consequently, if g depends analytically on one or more parameters, then z(g)
is an analytic function of these parameters.

By slight modifications of the argument, we obtain

COROLLARY le. The function z(f), the smallest zero of f, is defined and
analytic in the domain D of R defined by

D:SI<L,  [SOP >4 500 SO,

and its Fréchet derivative is

() =22

e

The problem of obtaining the higher variations, i.e., the higher Fréchet
derivatives, of z(f) on D, turns out to be equivalent to that of finding the
classical Lagrange expansion (Whittaker—-Watson [9], p. 132) of the smallest
zero of

z—Af(z)=0
in powers of A. We can also attain error estimates for the power series expansion
of z( f + Ad).
The approximation formula
g(z)

o(g)~ 2~ 505 = HE) = Hz.0)



.
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if zis close to z{(g), which is implied by the formula in the above corollary, is the
first step in Newton’s method for functions of the class considered.
In the appendix we prove

THEOREM 6. Let E(A) be the set of f€ R such that f(0)=0, and | /'(0)| = A.
Let H(z)=H(z,f) and 0 < k < 1. Then | H(2)| < k|z| for |z| < r(k), where

Fk) = A(o — D/(o + 2k + 1)
and
o2 =(2k + 1) — 43)|(1 — 4%).
This is the best possible, and is attained only by f(z) = §(cz), |c| = 1, where

A—z
5 =2 (m) |
The iterates of H converge to 0 in the circle |z| < r(1).

If H(x) is real and nonnegative on the interval 0 < x < A, then the iterates of
H converge on the interval 0 < x < 4/(2 — A)?, and this is also the best possible.
While r(1) is the radius of the largest circle in which H is a contraction for all
fe E(A), we do not know whether this is the largest ¢ircle in which the iterates
of H converge to zero. For references to the literature on Newton’s method, see
Ostrowski [7].

In part I, we derived a criterion of the form

lfO@] <B(zl, [fE))  iflfl<1,feR,

for the existence of a small zero of f. We also have the criteria

2|/ O)log (1/| £ @) < |1 )]

for the existence of a small zero, and

41O - O < |/ O

for the existence and uniqueness of a small zero, expressed in terms of | /(0}]
and | f'(0)|. In the appendix, we give a criterion for the existence of a small zero
in terms of the values of | /(0) and | £ (z)|, where z; depeads on f(0).

The simplest example is

COROLLARY Sa. If fe R, If]| < 1, |z1| < |f(0)|, and if [ (z) % O in the circle
|z] <|zy/t, where

fo= 10— al/[(L+ ),
{=log|l/f(z)],  «=1log(1/|/(O)]},
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then
“y<a—{<2

where nexp(1 +7)=1,9>0.

Thus if log| f (z1)/f(0)| is greater than 2 or less than —21, f has a small zero.
In particular, we may take z; =f(0), and we obtain the criterion that if
S (©0))/f(0)is too large or too small, then fhas a small zero.

If n > 1, then the n-tuple zero of fsplits, in general, into » small zeros of g,
and these have an algebraic singularity at g = f. However, we can represent g in
the form

8(z2) = P(z,8)G(z,8),
where
P(z,8) = 2"+ Q(z,8),

Qisapolynomial of degree < in z, and Gis analytic in zand #0 in a neighbor-
hood of zero. Furthermore, P and G are analytic functions of g for ||g — f]|
sufficiently small.

This is the essential content of the Weierstrass preparation theorem (see
Bochner—Martin [ 2], p. 183). We give a proof which yields explicit estimates for
the various quantities and domains involved. (A similar proof was given in the

thesis of Brown [3].)
Ifg=f+2Ad, Q= Q(z, N),G=G(z, }),
then
Ox(z,0) = 5,_1(z, $/h),

and

G(z,0) = h(z) Ri(z, $/h),
where

Sy (z, i ay z") = }n: a; 2%,

0 0

and

R,,(Z, F) = (F(Z) - Sn—-l(za F))/Zn'
We obtain explicit estimates for
[0(z, 1) — Qi(z,0)]

and
|G(z,1) — 1 — G\(z,0)|

in terms of ||@||.
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The Weierstrass theorem is a special case of a general theorem on Banach
algebras. We prove

THEOREM 4. If M is a closed module in a Banach algebra B, and R(M) is the
set of x € B such that every y € B has a unique representation in the form
y=gx+r, ge B, reM,

then R(M) is open. The solutions q = S.(y) and r = T (y) are bounded linear
transformations on B into B and M, respectively, and S, and T, are analytic
Sfunctions of x in R(M). Specifically, the sphere || — x|| < 1/I|S,]] is contained in
R(M).

In this sphere we can obtain the Fréchet derivatives of S, and T,, and
estimates of the form

[Se(3) = S(¥) + SSx(M (€ — NIl < Cili§ — xI* 11yl
and
ITe(y) — To(¥) + TSu(3) (€ — 0N < CllE — X7yl

The Weierstrass theorem is the simple special case B= R, M = the set of
polynomials of degree <n, and x = z". In this case, if y € R, then

Sx(y) (Z) = Rn(za y)
and
TAy)(2) = $u-i(2, p)-

In part 1Y of this paper, we study the simultaneous variation of all the zeros
of fe Rin a compact subset of U, under perturbation of f.

II. PERTURBATION OF SIMPLE ZEROS

Let feR, Ifll<1, f(0)=0, f'(0)=a. If g€ R, and ||g — f|| is sufficiently
small, then g has a unique zero z(g) near 0. We wish to study z(g) in some detail.
Let f(z) = zh(z), where h € R, ||A]| < 1, and i(0) = 4, and let

u(z) = (h(z) — a)/(1 — ah(z)).
Since [lul] < 1, u(0) = 0, then, by Schwarz’ lemma, |u(z)| < |z|. From
h=u+ a1 + au),
we obtain for |z| <r < 4 = |a],

|h(2)| = (4 — /(1 — 4r)
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and

|7 @] =r(Ad—r){((1 — Ar) =k(r).
Hence, by Rouché’s theorem, if 0 < r < 4 and

lg—fll<e<k(r),

then g has a unique zero z(g) in the circule U,: |z] <r.

The function k(r) attains its maximum «(4) in the interval (0, 4) at
r=r(4)=0—-(1—A%Y?)/4
A 4 13 Qn—3)
B T e e e G (1)
and
ol A) = k(r(A)) =—1+42r(4)/4
A At

=gt

If 0 < € < a(4), then the equation
k(r)=¢
has tworootsin (U, 4):
ry(€) = €2 r(8) < ri(e) = €'2/r (8) < A,
where
8 =2€"2/A(1 + ).

Consequently, if ||g — f|| < € < «(A), then g has a unique zero z(g) in the
circle |z| < r((e), and
|2(8)] < ra(e).

The estimates

A A
<—2‘+—8-<V(A)<

RN
NN

+§<4
and
A4 < ald) < A2,
are often sufficiently accurate. Thus, we have
|2(g)| < 2¢/A(1 + €) < 2¢/A4
and if € ¢ 4?/4, then g has no zeros in the annulus
2e[/A(1 + €) < |z| < AQ1 + €)/(1 + 83).

Hence, we obtain
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TaeoreM 1. If fe R, [[fli< 1, f(0)=0, [ f'0)] =4 #0, and if r(4), o{4),
ri{€), and r,(€) are defined as above, then for g € R, and
lg—fll<e<ald),
g has a unique zero z(g) in the circle |z| < r(e) and

l2(9)] < 2o

As € —> 0, we have
rae)~eld,  A—ri(e)~e(l—-A%)/4,
and as € — «(A), we have
lim r(€) == lim r,(€) = r(A).

Let F(z) = g(z) — az — g(0), where a = f"(0) = b(0). If we apply the Schwarz
femma to g(z) — f(z) — g(0), we obtain

|g(2) — f(2) — 8(0)] < 2¢z].

Similarly, we have
IM(z) — a] < 2|z,

so that
F(z) =g(z) — f(2) — g(0) + z(h(z) — a)

satisfies
[F(2)| <2|z|® + 2¢[z].

If € < of{A) and z = z(g), we have
laz + g(0)] < 2|z|* + 2¢|z| < 12€*/42.
This yields

COROLLARY la. Under the hypotheses of Theorem 1,

|2(g) + 8(0)[f"(0)] < 12°/42%
Therefore z(g) is Fréchet differentiable at f, and
Z(f)(g) =—&0)/f(0).

If we apply this result to g(z) = f(z) — w, where w is a constant, we obtain

COROLLARY 1b. For 0 < e < alA), the image of the circle U,, r = ry{e€), con-
tains the circle U,. In particular, the circle U, is contained in the range of f.
The inverse function [~ is defined in U 4,

ool <o < (141,
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and

w 21 43
77@! < 12|w|3/4%.

COROLLARY lc. If fe R, f(0) =0, f(0) = 1, and || f || < M, then the range of f
contains the circle U,, r = 1/4 M.

This is obtained by applying the previous corollary to F=f/M, and using
the estimate «(4) > 4%/4.

Corollary 1c is the main step in the classical proof of Bloch’s theorem (see
Landau [6]). If we apply the same reasoning, using Theorem 1 instead of the
corollary, we obtain

7 -

CoroLLARY 1d. If fe R, f(0) =1, then there is a constant ¢ such that
[+ ¢ — chasazeroin Ufor all ¢ € R such that ||¢|| < 1/16.

IffE —R’ ”f” < l,f(O) = aO:f’(O) =dy, thenf: ¢(F)s where
Qg +w

¢(W): 1 +67()W’

FeR, IFl<1, F0)=0

and

FO= =

The above results, applied to F and to g=a,+ F, imply that if
4]ag| (1 — |a)?)* < |@y|? then f has a unique zero z(f) in the circle U,
r=r(|ao|, B), B=|a,|/(1 — |ay|?), and that

) <2 (14 45, m

A weaker sufficient condition on fe€ R, ||f|| < 1, for the existence of a small
zero with, however, a cruder estimate of |z(f)] is:
If f(0)=¢>0, |f'(0)] =4, and 2¢log(1l/e) < A4, then f has a zero in U,,
where
r=2elog(1/e)/4 = 2y(f).

This is obtained by applying Schwarz’ lemma to
loge —log f(z
fi(z) = g —log /(2)

loge +log f(2)
in the circle U,, where r = |z(f)].
The example f(2) = ((z + 8)/(1 + 8))%, 0 <8 < 1, shows that y(f) can be
arbitrarily small and | f'(0)}?/| £ (0)| can be arbitrarily close to 4 for a function
with a small multiple zero. Therefore, no condition of the above type, on y( f),
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can insure the uniqueness of z( /), and the constant 4 in the above results is the
best possible.

A complex valued function T(f) on Ris said to be analytic at f; if it is defined
at fp and if there is a linear functional L on R such that

IT(fo + $) — T(fo) — L(¢)] = oll$l)
for ¢ € R, ||| = 0. We call L = T'(f,) the Fréchet derivative of T at f;.
The above results imply

CoOROLLARY le. The function z(f), the smallest zero of f, is defined and
analytic in the domain of R defined by

DA< L L OF >4/ @0 - [ FOP?

and its Fréchet derivative is

()=~ 2D

REED)
To obtain the higher variations of z(f"), we must study the smallest zero of
g=f+ A¢ as a function of A, If

feR, Ifli<l, [f'@=a#0,

and

ZW) =z(f+7P),
where ¢ € R, then the nth Fréchet derivative z®(f)(¢) is given by
z2M(f)(¢) =Z2™(0)

and we have the power series expansion

2(f+4) = % 2O ) ().

But Z(A) is the smallest zero of
z—Af(z) =0,

where s = —¢/h. We arrive at the classical Lagrange expansion (see Whittaker—
Watson [9]). The Cauchy formula yields

; z = Mf(2)

where ¥ is the circle |z| = r, and ry(e) < 7 < ri(€), e = ||¢]|, |A] < 1. On% we have

ih(2)] < €/k(r),
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so that the most favorable choice of r is r = r(4), and then k(r) = «(A). Since

21— AY'(2)) = z — A(2) + A(2) — 2¢'(2)),

we see that
1 , 1
Z\) = B J; zu'(z)dz = ~ 5,7 J‘(g u(z)dz,

where u(z) =log(l — Afi(z)/z), taking the determination such that
largu(z)| < /2 for z € €. We thus obtain

Z(A) = § Cn An’
1]

where
_ 1 g\ 1
=53 | (12) =y (0 40O

and D = d/dz. This yields

z0($) = (=1)* (D"~} ($/h)")(0). @

The error

&= 27+ 4= 320N Bk )

can be estimated by
1 € ntl 1
€"<n—l—l(&) 1—elo’ @)

if o = a(A), 0 < e < a(A).

We remark that by using the facts that Z(A) is analytic and | Z ()| < r(4) for
|A] < «/e, and by applying Landau’s theorem (see Landau [6], p. 26), we can
prove that

€ < (K, + D)1 (4) (efe)™, )

where

& (—1/2\2
m_Z(k),
V]
K, ~logn/w asn > oo,
Thus, we obtain
CoroLLArY 1f. If feD, f(0)=0, ¢ € R, ||dl] < € < o= a(A), then the nth

Fréchet derivative of z(f) is given by (2), and the error ¢, in the approximation (3)
can be estimated by (4) and (5).



PERTURBATION OF ZEROS OF ANALYTIC FUNCTIONS I 285

III. PERTURBATION OF MULTIPLE ZEROS

Let feR, Ifli<l, flz)=2z"h(z), where he R, h <1, A0)=A4 >0, and
n>1.Ifge R, and || g — f]| is small, then g has n zeros near 0. We wish to study
these zeros in some detail.

As before, we have

|f(@)] = r'(a—r)/(1 — Ar) = k,(r)

for |z} < r < A. Hence, if
g =Sl <e<kyr),

then g has exactly n zeros in the circle U,.
Now, k,(r) attains its maximum in (0, 4) at

r=r(A4)=[b— @42
_pdP 1[0 - A4H(A — 2 4]
B A(l 4+ w)
_n oy A
n+1 n+1) ’

where b =[n(l + A%) + 1 — A%}/nd, p=(n— 1)/(r -+ 1). This radius r,(4) is,
thus, expressed as a power series in 4 with nonnegative coefficients, which
easily yields the estimates:

A _nd | ond gy A A
n+l n+1 (m+1)Y " n+1

< A.

The maximum

OC,,(A) = k,,(l‘ n(A))
= ry(A)" (nr{4) — (n - 1) 4)

n gntl 2
4 (1+1A-+0(A4))

NCEEE n+1
satisfies
n+1
WA () <y,

If 0 < € < ,(A), then the equation
k(r)=¢

has two roots 0 < p, < p, in the interval (0, ). If we set € = 84", r = A4, we
find that A satisfies

X1 —2) =38(1 - 243, O0<i<l. {6)
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For small &, we see that the two solutions 0 < A; < A; < 1 satisfy

(1-4%
n

/\z=n(1+ n+0(n2)), =3,

and
Ay=1-—(1—4%3+ 0(8%.

A little computation shows that if < 1/6, then
)\2<77(1+( )n(l—l—6n)).

We obtain the result:’

2

n

THEOREM 2. If feR, | f|I< 1, f(2) =2z"h(z), where |h(0)| = A >0, and if
g€ R, llg—fll < e < x(A), then the number n(r, g) of zeros of g in U, satisfies

n(r, g) =n for
MA<r<)A,

where A, and A, are the roots of (6) in (0, 1).

We remark that while the above is the best possible condition on fig — £,
the behavior of g outside U, is not used in the above proof. If M(r, F) =
sup (JF(z)]: |z] <¥) (so that ||F|| = M(1, F)), then it suffices for the above
conclusion that

M(4,g—f) < e < a,(A).

We can apply these remarks to obtain a generalization of Corollary le:

CororLrLARY2a. Iffe R, || f]l < 1,
FO=3Sa  s@)=3a
(4] 0
and
M(A: S, —1) =e€< Kn, OCn(A),

where
A= |an'/Kn’a Knl = Kn—-l +1

and K, is the constant in (5), then n(r, ) = n for
A(e/K YA <r < M(elK,)) A.

For we have

(@) =sp-1(2) + 2" h(2),
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where £ € R, h(0) = a,, and |4 = || f— 5,-1]| < K,,". Hence theorem 2 applies to
g=fIK,.
For n=2, we have «,(4)>44%/9, and K,' = 9/4, which leads us to the
condition
€= |ag| +4|ay||a;]/9 < (4|a,|/9)° = 4°

for f'to have two small zeros. If 8 = 4¢/94°%, then the two zeros are in |z| < A, 4,
and there aie no other zeros in |z| < A, 4, where 0 < A, < A, are the roots in
(0, 1) of the equation

A1 -2 =58(1—4%X.

Since the nth-order zero of f= z"h splits, in general, into » zeros of g when
llg —flis small, z(g) has a branch point at g = f, and this algebraic singularity is
rather complicated. If z,, ..., z, are the small zeros of g, then

P(z,g) = H (z—zp) = 2"+ 0(z),deg O <7,

is an analytic function of g. We have the representation
g =PG,

where G € R and G(z) # 0 in a neighborhood of 0 containing zy, ..., z,. This is
essentially the Weierstrass preparation theorem.

If f==z"h, K(0) # 0, then we can easily reduce the study of the representation
of g =f+ ¢, |$|| small, in the form PG, to the special case 4= 1. We shall,
therefore, first analyze the problem:

For ¢ € R, |4 < ¢, find a polynomial P = z" + Q, deg Q < », and a function
G, such that G, 1/G € R, and

g=z"+¢=PG.

We wish to obtain control over the dependence of P and G on ¢.
Of course, if |$|| < € < 1, then we see, by Roché’s theorem, that n(r, g) = n for
e!/® < r < 1. We have the formula

log(P(z)/z") = log(1 + O(2)/z")

=A(z,8) =§};l. f@gg»’((glog (1 —-ﬁ) dt,

where € is the circle || =r, €//" <r <1, and |z| > r. This shows that 4, and
P = z"exp A, are analytic in the sphere ||g — z"| < 1 in R.

We can put the formula for 4 in another form which may be useful for some
purposes. Let g(z,A) = z" + Ad(z), where ||l < e <1, and |A} < 1, and let

Pz, A) = log(g(z, A)/z").
19
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Then 4 is analyticin Aand z for |A| < 1, €!" < |z| < 1, and

Therefore
Aae) =5 [ detoos (1-) at

1 dl
5 | e,

Ck(Z) Ak’ (1 )

-8

where
G YA (98
=ik | T D

1yk-1
= (TIZ),,T Su—1(2, 9%),

and
S (z, i akz") = % a, z*.
0 0

Of course

Ko = (5] 465"+ Bl = 492

is the kth Fréchet derivative (kth variation) of /A at the point z* in R. In par-
ticular, we have the first variation of P:

P(z,2%)(¢) = QV(z, 2")(¢) = 2" Az, 2") ()
= Sp-1(2 ¢)>

and the estimate

[P(z,g)—z"—s,,_l(z, ¢)[ <B€29 IZI < 1’ (2)

for a certain constant B.
While we can obtain an estimate for B directly from the formula for 4,
another approach is also quite instructive. Since we have

n

P(2)=1] (z— z1), lzkl <€l

1

then for |z] =1,
(1— @mp < |P@)] < (1 + ey <2,
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and therefore
|G(2)™!| = |P(2)/g(2)] < 2"/(1 — ¢).

Since G(z)~! € R, this inequality also holds for |z| < 1, i.e., |G} < 27/(1 — ¢).
Let H(z) = 1/G(2) =1 + H,(z). Then the equation

P=2+ Q="+ $H

implies
Q=z"H, + He,

or

Q = 5,-(z, HP).
Hence, by Landau’s theorem, we obtain
101 < Koot | Hilligl < Kooy 27 €/(1 — €).
Moreover, if we define the operator I, by
r, (i akz") = i a,z¢ ",
0 2
then we have
H, + I's(H¢)=0. {3)
But for || /|| < 1, we have
T2 @) < |(f (@) — su-a(2)/2"| < K,
ie., I, < K;'. Hence we infer that
[H\|| < K/ IH gl < Ky 27 €f(1 — ),

and therefore
lQ — Su-1(z, ¢‘)| = |85-1(2, H, S{’)!
< K,_1 Ky’ 2" 2)(1 — e).

This yields (2), with
B=K,, Knl 2"/(1 - E)' (4)

Higher order approximations can be obtained by solving
Hl Z-Faqs - ]12(¢H1)

by iteration, and substituting the results in (3).

Since P is a perturbation of Py = z" + 5, (2, $) of the order of O(?), we see,
by the results of this and the preceding section, that if z, is a zero or order m of
Py, then P has m zeros in a circle of radius O(e*™) about zg.

We may summarize these results as follows:
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THEOREM 3. If ¢eR, |dli<e<], and g=z"+¢, then n(r,g)=n for
el < r <1, and there is a polynomial Q = Q(z,g), deg Q < n, and a function
G = G(z,8) such that

g=0(E"+Q)G inU,
G,1/GeR.

The function P = z" + Q = z"exp A is analytic in g in the sphere ||| < 1 in R,
and so is G. The function A = A(z,g) is given by the formula (1) (with A= 1).
The first variation of P is s,.,(z,¢), and the error is estimated by (2) and (4).

The function G satisfies

(11— 2" < |G2)] < (1 + &))(1 — &'/,
11— 1/Gll < K,' 2" €/(1 — ),
and

IG—1] < K, 2"e(1 + €)/(1 — )(1 — €'/,

More generally, if fe R, ||f||< |, and f(z) = z"h(z), where A€ R, |h(0)| =
A>0,and ¢ € R, ||$|| < ¢, then, for g =1+ ¢, we have
g(ra)jr = h(rz)(z" + ¢.(2)),
where
$1(2) = (rz)[r" h(rz).
If0<r<4d,then ¢, € R, and
1]l < €(1 — A)[r'(A — 1) = €[k(r),

so that the most favorable choice of r is ,(A), and then ||¢,[| < €/, (A).
Therefore, if € < «,(A4), we have the factorization

g(r2)/r"=("+ Q1) Gy,
where Q, is a polynomial of degree < n, and G, 1/G, € R. Hence we have
g(2) = (2" + 1" Q\(z[r)) Gi(z[r) = (=" + Q(2)) G(2),

where Q is a polynomial of degree <n, and G and 1/G are bounded and
analytic in U,, r = r,(4). Furthermore, Q and G are analytic functions of g in
the sphere ||g — fl] < o (4) of R. Thus, if g depends analytically on some para-
meters, then Q and G will be analytic functions of these parameters.

In particular, we obtain the classical case of the Weierstrass preparation
theorem:

COoROLLARY 3a. If Fis analyticon U x U, ||\F|| < 1, and F(z,0) = z"h(z), where
he R, |W0)| = A >0, then there exist Q = Q(z,t) and G = G(z, t) such that Q is
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a polynomial of degree <nin z, and Q, G, and 1/G are analytic in |t| < o, (A4)/2,
and |z| < r(A),
F(z,t)=(2"+ Qz,1)) Gz, 1).

Furthermore, if F{z,0) = f,(2), then we have,
Qt(zs 0) = Sn_1(Z,ﬂ/h)

and

G(2,0) = h(z)(I2(f1/M)(2).

Of course, we can easily give bounds on @, G, and 1/G in the bicylinder
U, x Uy, r =r(A), s = o, (A)/2.

One of the main values of the above results concerning the analyticity of Q and
G, and giving bounds on them, is that they are uniform in the sphere ||¢]| < e and
do not depend on any more detailed information regarding ¢. If I, is the ideal
in R generated by z*, i.e., the set of ¢ € R which have a zero of multiplicity >k
at 0, then for ¢ € 3, — 3T, ,, we can obtain another proof of theorem 3 and
another representation of P and G, by using the approach of Corollary 1f.

Let us assume, for the sake of simplicity, that # = 1. (We have seen how to
reduce the general case to this special case.) If ¢ €3, —3J,_;, then ¢ can be
represented in the form ¢ =—z*4"*, and this representation is unique, if we
restrict arg(0) in an obvious way. Since the case k = n is trivial, we may
assume that k < n.

Then we have, setting A = u"*,

g= Zh 4+ )\(]S — Zk(Zn—k _ Mu—k ¢n~k)
~ T G- o' wia)
where
w = exp(2wil/(n — k)).

But the equation

z—tj(z) =0

has a unique solution z={(¢) such that {(0) = 0 and { is analytic for
e < 1/l If
Dizy, 23) = ((z1) — {2)) (21 — 22),

then D is analytic in the bicylinder U x U and
| D(zy, 22)| <2/(1 ~r)
in the bicylinder U, x U.
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Then we have

z— tf(z) = z — {(t) + t (@) — ¥(2))
= K(z,1)(z— (1)),

where
K(z,t) =1 —tD(z,$(2)).

We see that Kis analyticin U x Uif || < 1 and
|K(z,2) — 1| <2s/(1 —r) for|z|l<r, |7} < 5.
This yields the representation
g(z,0) =2" + Ad = PG,
where
PN =TT - o)
and

G(z, ) = ﬁ K(z, 0’ p).

We can obtain bounds on P and G for |z| <1 and |A] < 1/|$||, and on 1/G for
lz] +2|p| <e< 1.

Since equations of the type defining { are easy to handle, this representation
may be useful when detailed information regarding ¢ is available.

IV. GENERALIZATION OF THE WEIERSTRASS PREPARATION THEOREM

The following considerations give, perhaps, a better insight into the meaning
of this theorem. In the formulation of Theorem 3, we are given a small ¢ in R,
and we seek a function g € R and a polynomial Q of degree <n such that

"=0"+¢)qg—- 0.
This is a special case of the representation of any F € R in the form
F=(@E"+¢)g+p, geR, degp<n. 5)

The general case follows from the special case on division of F by the poly-
nomial P =z" 4 Q.
On the other hand, when ¢ = 0, the equation (5) has the unique solution

q=F2Fa P=PIF=Sn——l(ZaF)-
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The Weierstrass theorem says that (5) retains this property of solvability under
the perturbation ¢, and that g and p are analytic functions of ¢.
The set Z,_, of polynomials of degree <n is a closed module in the algebra R.
We are thus led to examine the general problem of a Banach algebra Banda
closed module M < B. The element x € B is said to be M-regular, if every
element y € B has a unique representation in the form

y=gqx+r, geR, re M. 6}

If M is the zero module {0}, then x is M-regular if and only if x has an inverse.
A classical theorem (see, ¢.g. Gelfand, Raikov, and Shilov, [4], p. 20) states that
the set of invertible elements is open and that x~! is analytic on this set. We
shall prove that the set of M-regular elements is open, and that g and » are
analytic functions of x, for a general M. The special case B=R, M=%,_ |,
x =X, = 2" is essentially Theorem 3.

If X is M-regular, consider the Banach space B x M, with the norm

(g, )l = llgll =+ lir i,

and the linear transformation
L{g.r)=gx +r.

This is continuous, and transforms B x M one-to-one onto B. Hence, by
Banach [7], p. 41, L has a continuous inverse

L(3) = (S, TLy)-

Let € = x + ¢, where ||¢|| is small. We wish to solve the equation

y=0Q¢+R
This equation is equivalent to
y—Q¢=0x+R,
or
Q0 =5{y— Q¢)=q— SA29),
and

R=T{(y— Q(}S) =r-— Tx(QqS)
The linear transformation ¥ (Q) = Sx(Q¢) is a contraction if
Vil <s@)lgl =k <1.

Hence, if ||¢|| < 1/s(x), then there is a unique solution for Q:

Q=(I+V)'(q)= z VY (q) = Vi(g),
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and, therefore, also a unique solution for R:
R=r—-T(Vi(q@)$)
We have the bounds
191 <ligl/(X — k) < sG)Iyll/(1 — k),

and
IRl < t()Ipl/(1 — k).

These estimates imply that
1Q —qll < ks()lIylI/(1 — k),
IR —rll < kt()Iyl/(L — k),
1Q — g + Sgd)ll < k> s yll/(1 — k),

and
IR —r + Tgd)ll < K2t (X)|Iyll/(1 — k),

The first two inequalities assert the continuity of S and T
IS¢ — Sull < ksG)/(1 — k),  k=s(x)||€ — xl, (7

and
ITe — Tl < kt(x)/(1 — k),

while the last two assert that .S and 7T are Fréchet differentiable at x. Let W and
£ be the linear transformations on B into B, = B®, the space of bounded
linear transformations on B to itself, defined by

W($)(3) =—SAS(¥) ),
QP () =-TAS(») $)- ®)
Then the Fréchet derivatives of S and T are W and £, respectively, and
[Sg — Sy — W (€ — )| <ky s(x)*[I€ — xI%,
T — Ty — (6 — )| < ky s(x)* t(x)]€ — x]1%, ®

where
ky=1(1-k), k=sx|é—x|<l.

‘We can summarize our results as follows:

THEOREM 4. If M is a closed module in a Banach algebra B, then the set R(M ) of
M-regular elements is open. If x € R(M), then the solutions q = S,(y) and
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¥ =T (p) of (6) determine bounded linear transformations S, and T, on B into B
and M, respectively. The sphere

1€ — x| < 111Kl

is contained in R(M). If k = s(x)||€ — x|| < 1, s(x) =S|, then S and T are
continuous functions of x (inequalities (7)), and are, in fact, analytic on R(M.
Their Fréchet derivatives are W and Q, given by formulas (8). The errors in
approximating S¢— Sy and Tg — T, by their first variations are estimated in
inequalities (9).

APPENDIX

V. SoMmE OTHER CRITERIA FOR LLOCATION OF A ZERO

Here we return to the question of detecting a zero of a function fe R,
IIf | < 1, by means of the values of fat a few points. In Part 1.of this paper we
showed that if f(z,) is not too small, and f(z,) is very small, where z, and z, are
given in U, then fhas a zero near z,. In section Il of the present part, we showed
that if f(z,) is sufficiently small in comparison to f'(z,) (which is obtained from
the values of fat two “infinitely near” points), then there is a zero of f near z,.
In these criteria we use the values of fat two points chosen in advance. In the
present section, we give criteria for the existence of a zero near z; in terms of
the values of f(z,) and f(z,), where the location of z, depends on the value of
f(z,). Crudely speaking, if |z, — z;| < C|f(z1)|, and | f(z2)[f(z})] is too large
or too small, then fhas a zero near z,. For example, if | /(f(0})/f(0)| is greater
than e? or less than exp (—27), where

logn+7n+1=0, OD<n<l,

then f has a zero near 0.
Suppose the fe R, [Iflii< 1, and |f(0)| =e® If f#0 in U,, and |z] =r,
| f(2)| = "%, then, by Harnack’s inequality, we have
Tl g0y
r+ Fo F—ry
or
r < rofto,

where

to = [{— o [(§ + o). (10)

Hence, if rg < t,, we infer that £ has a zero in U, and obtain the non-trivial
bound ry/t, for the smallest zero.
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The condition ry < t, is equivalent to

min(¢/a, «/8) < (1 —ro)/(1 + r).

This form of the condition is useful if we are given in advance 7, = |z|, where z
is the second point where fis computed. We are interested here in the situation
where ry depends on o, i.e., we compute f(0) and, depending on its value, we
choose the point zat which we compute f. In this case, it is more convenient to
put the criterion in the form

a—{>2rgaf(l1+1y)  or {—a>2ryaf(1—ry).

For example, let ro = c| f(0)|* = cexp(—ke), where ¢ >0, k> 0. Then we
have

2rg /(1 + ro) = 2¢/kh(y),

where
y)=(E+0ofy, y=ka

The minimum of A(y) for y > 0 is attained at I + 7, where
nexp(n+1) =g, (an

the minimum being ¢/7. Therefore, we shall have ry < ty, if { — &> 27/k.
Similarly, we find that if 0 < ¢ < 1, then the maximum of 2r, /(1 —r¢) is
2y/k, where y is the solution of the equation

yexp(l—y) =c. (12)

We have thus proved
Tueorem 5. If fe U, | flI< 1, |fO)| =e% |z/| <c|f(0)* = cexp(—ka),
¢>0,k>0,and| f(z))| =e %, and if f(z) # O in the circle |z| < |z,|[to, where t,

is given by (10), then
‘ a— L < 2n(0)/k,

where 7(c) is the solution of (11), and if 0 < ¢ < 1, then
L —a<2y(c)/k,
where y(c) is the solution of (12).

If we take c = 1, k = 1, then we obtain

CorROLLARY Sa. If fe R, [fll<1, |zl <|f(0)], and if f(z)#0 in |z| <
|z, 1/to, then

—2n(1) <log|f(z)/f(0)] <2,
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VI. NEWTON’S METHOD

Corollary 1a, applied to g(2)=ay +f(z) =a, -+ zh(z), g'(0) = a; = K0D),
states that if |ay| < ||4]| «(|a, |/|/Al]), then g has a unique small zero z(g), and that

g0
g'©)
We recognize the approximation formula

z(g) ~ —£(0)/g'(0y = H(0)
as the first step in Newton’s method:

2(g) ~ H(z) = z — g(2)/g'(2),

That s, our corollary gives us a criterion for the existence of a uniquesmall zero

z(g), and an estimate for the error |z(g) — H(0)] in the first step of Newton’s
method.

This raises the question of the behavior of the iterates of H, and of the
domain of convergence of Newton’s method. Of course, there is a vast liter-
ature on this subject (see Ostrowski [7]).

We wish to discuss here the domain of attraction of H around a fixed point,
which is, of course, a zero of g.

More precisely, given fe R, |[fll< 1, f(0)=0, | f'(0)| = 4 >0, we wish to
determine an r < 1 such that for |z} <7,

H(@)=z—f(2)/f(2)
satisfies | H(z)| < |z|, and, more generally, for 0 < k < 1, to find r(k) such that
[H(2)| < k|z| in the circle |z| < r(k).
We may, without loss of generality, assume that f'(0) = 4. Then f can be
represented in the form
f(2) = zd(v) = zh(2),

1z(g)+ < 12/ao)? [l |as].

where
$(2) = (4 — 2)/(1 — 4z),
and v € R, |joll < 1, v(0) = 0. We find that
H@@)|z=u/(1 +u),
where 1(z) = zh'(2)/h(2).
We wish to determine the domain of variation of u(z) for a fixed z, |z| = r < 4,
as v ranges over the set E:
vER, ol < 1, 2(0)=0.

Now, we have

u=z¢'(0) v’/ $(v) = —(1 — A?) 20 [{h(v),
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where
() = (4 — v)(1 — Av).
But it is known (see Heins [5], p. 84) that
()] < (1 = o@D/ —-r?),

and that for given z and (z), v'(z) can take on any value in this circle. Hence,
given z and v(z), u(z) can take on any value in the circle

[u(2)] < (1 =A%) r(1 - [v@P)/([e)]) (A —r?).
We have

W0 (=) = ) ((x— )+ (155) ) =

so that (1 — x2)/4(x) is increasing. But, by Schwarz’ lemma, |o(z)| <r, and
v(z) can take on any value in U,. Consequently, we have

[u@)| < (1 — A rf(r) = —rd'(N)/$(r) = U(r)

for |z| <r < A.
This inequality is the best possible, and the equality is attained for v(z) =
cz, |c| =1,
f(2) = zd(cz) = F(cz)/e,
where §(z) = z¢(2). If
$(2) =z — F@)/F (2)
is the “Newton function” corresponding to §, then we can express this result in
the form:
|H(2)/(z — H@)| < |90)(r — H(r))|  for [z <r< 4.
Hence, if U(r) < 1, then
|H(2)/z| < |H(r)|/r,
and this is true for r < ry = A/(1 + (1 — A?)!/?). Since $ has a pole at rg, there-
fore for the class of functions considered, there is no uniform bound for H in

any circle U,, r > ry.
We find that for 0 < k < 1, #(k) is the root of the equation

Ur)=kl{(k+1) or H(r)=—kr, (13)

and we obtain
r(k)=A(c - D[(c + 2k + 1), (14)

where
o= {((2k + 1)*> — 4%)/(1 — 4%},

‘We thus have
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THEOREM 6. Let E(A) be the set of f € E, such that £{(0)=0 and | f'(0)| = 4.
For fe E(A), let

H@z)=z—f@)f'(2)=H(z f).
Then for |z| < <ro=AJ(1 + (1 — A%)V?), we have

max |H(z)| = ()],
FEE(4)

where $(z) =5z, T), F(2)=z(4 —2)/(1 — 4z). For |z| =ry, H(z, f) is un-
bounded for f € E(4). For 0 <k <1, |H(z, )| < k|z| for |z| < r(k), where r(k)
is given by (13), (14), and this is the best possible. Hence, the iterates of H converge
to zero for |z| < r(L).

Forrg>r>r =A/(1 + (1 + A1 — 4)?), we have |H(r)| > 1; hence there
are f’sin E(A) such that for given z, |z| =r>r;, |H(z)| > 1, so that Hy(z) =
H(H(z)) may be undefined. For r(1) < |z| < r;, our theorem does not tell us
anything about the convergence of H,(z).

Forf=§, H=2$, if we set

p(z)=(1—4%z/(4~z),
then we have
H9HE) =—u2)
and therefore
#(9(2)) = —p(z)*"
Hence $,(z) -0 in the region |u(z)| <1, and $,{4) - 4 in the circle
|u(z)] > 1. In general, for |u(z)| = 1, H,(z) diverges.

The region |u(z)| <1 is the exterior of the circle with diametral points at
AJ(2 — A?) and 1/A. The circle |z| < 4/(2 — A?) is the largest circle with center
at the origin contained in this region. Therefore £,(z) converges in this ¢ircle
which is larger than |z| < r(1).

We note thatif |z] <r, U(r) = A, then H(z)/z lies in the image of the circle U,
under the mapping

w=u/(1 + u).

This is the interior of the circle with diametral points at A/(1 + A) and —A/(1 — A}

for A < 1, the exterior of this circle for A > 1, and the half-plane R(w) < 1/2 for
A=1.

We can obtain, more generally, an estimate for
H(z) u(z)

M—H@E) A+Q—-Du(z)
if A > 1. For then we have
|H(2)/(Az — Hz)| < Ur)[(A— (A —1) U(r))
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if U(r) < A/(A — 1). But the right-hand side is easily expressible in terms of §,
and we infer that

|H(2)/(Az — H(2))| < |9()/(Ar — H())],

under the condition U(r) <A/(A—1). If we set A= A/r, and observe that
U(@r) < A/(A — r)forr < A, we conclude that

rHz) | _| $) |_ @)
Az—rH(z)| ~|A—9(r)] 1— 42

<

We have ih particular, (
IP(H(r))[ <ur)? for O<r<A.
If fis such that H(r) is real and non-negative for 0 < r < A4, then we see that
pUH(r)) < w(r)”

and therefore H,(r) — 0if u(r) < 1,i.e.,r < 4/(2 — A?).

Thus, under these additional assumptions, Newton’s method converges on
the same interval [0, 4/(2 — A?)) as it does for the special function §, and this
result cannot be improved. It would be desirable to clear up the question of the
behavior of H,(z) in the annulus r(1) < |z| < r;, for general f'e E(A).
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